Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Guo-Ren Yue,* Xin-Jian Xu, Yu-Zhen Shi and Lei Feng

Chemical Department, Key Laboratory of Resources and Environment Chemistry of West China, Hexi University, Zhangye 734000, People's Republic of China

Correspondence e-mail: hxuygr@sohu.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.039$
$w R$ factor $=0.110$
Data-to-parameter ratio $=20.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[N, N-Dimethyl- N^{\prime}-(2-pyridylmethylene)ethane-1,2-diamine]dithiocyanatocopper(II)

In the title Schiff base compound, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is five-coordinated by three N atoms from the Schiff base ligand and by another two N atoms from two thiocyanate anions. The coordination geometry is best described as distorted square-pyramidal. In the crystal structure, there are no significant intermolecular interactions.

Comment

Investigations of copper(II) complexes have been of great interest in coordination chemistry (Dalai et al., 2002; Bhaduri et al., 2003). As an extension of work on the structural characterization of copper(II) complexes, we report here the structure of the title compound, (I).

(I)

Compound (I) (Fig. 1) is an electronically neutral mononuclear copper(II) compound. Selected bond distances and angles are given in Table 1. Atom Cu 1 is coordinated by three N atoms from the Schiff base ligand and another two N atoms from the thiocyanate anions. Atom N4, of one of the thiocyante anions, acts as the apical atom of a highly distorted square-pyramidal geometry, as defined by the τ value ($\tau=$ 0.28) calculated according to the literature (Addison et al., 1984).

The distortion of the square pyramid is also revealed by the bond angles between the apical and basal donor atoms [96.69 (11)-113.52 (11) ${ }^{\circ}$], which show a considerable deviation from the ideal 90° angle in a regular square pyramid. The smallest bond angles for the basal donor atoms [75.43 (10) ${ }^{\circ}$ for $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ and $78.02(10)^{\circ}$ for $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$] correlate with the strained ligand bite angle for the five-membered chelate rings. All the bond lengths involving atom Cu 1 are in normal ranges.

In the crystal structure, the molecules pack in columns along the b axis, as shown in Fig. 2. There are no significant intermolecular interactions in the crystal structure.

Experimental

Pyridylaldehyde ($0.1 \mathrm{mmol}, 10.7 \mathrm{mg}$), N, N-dimethylethane-1,2-diamine $(0.1 \mathrm{mmol}, 8.8 \mathrm{mg})$, ammonium thiocyanate $(0.2 \mathrm{mmol}$, $15.2 \mathrm{mg})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad(0.1 \mathrm{mmol}, \quad 19.9 \mathrm{mg})$ were

Received 7 March 2005 Accepted 9 March 2005 Online 18 March 2005
dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h to give a clear blue solution. After keeping the solution in air for 5 d , blue block-shaped crystals were formed.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\right]$
$M_{r}=356.95$
Monoclinic, $P 2_{1} / n$
$a=10.216$ (1) А
$b=15.053$ (2) \AA
$c=10.610$ (1) A
$\beta=91.164$ (2) ${ }^{\circ}$
$V=1631.3(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.453 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4575
reflections
$\theta=2.4-24.7^{\circ}$
$\mu=1.59 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.23 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.703, T_{\max }=0.755$
18130 measured reflections

Refinement

Refinement on F^{2}
3734 independent reflections
2649 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-19 \rightarrow 19$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0501 P)^{2}\right. \\
& \quad+0.4185 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.92 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.110$
$S=1.02$
3734 reflections
183 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 5$	$1.958(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.211(3)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$1.963(3)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.222(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.061(2)$		
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 4$	$111.20(14)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$75.43(10)$
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 2$	$135.15(13)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 3$	$96.66(11)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$113.52(11)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3$	$101.31(11)$
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1$	$96.34(11)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$78.02(10)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$96.69(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$152.21(9)$

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Hexi University for funding this study.

References

Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-56.

Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abboud, K. A., Streib, W. E. \& Christou, G. (2003). Inorg. Chem. 42, 1483-1492.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The crystal packing of (I), viewed along the a axis.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Dalai, S., Mukherjee, P. S., Drew, M. G. B., Lu, T.-H. \& Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85-90.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

